Translate

How Index stored in DB and Improve query Performance?

SELECT * FROM Employee
WHERE Employee_Name = 'Jesus'

For more details on Indexes and it's TypesClick here.


What would happen without an Index on the table?
Once we run that query, what exactly goes on behind the scenes to find employees who are named Jesus?
The database would literally have to look at every single row in the Employee table to see if the Employee_Name for that row is ‘Jesus’. And, because we want every row with the name ‘Jesus’ inside it, we cannot just stop looking once we find just one row with the name ‘Jesus’, because there could be other rows with the name Jesus.
So, every row up until the last row must be searched – which means thousands of rows in this scenario will have to be examined by the database to find the rows with the name ‘Jesus’. This is what is called a full table scan.

How does an index improve performance?
Because an index is basically a data structure that is used to store column values, looking up those values becomes much faster. And, if an index is using the most commonly used data structure type – a B- tree – then the data structure is also sorted. Having the column values be sorted can be a major performance enhancement.
IF we create a B- tree index on the Employee_Name column This means that when we search for employees named “Jesus” using the above SQL, then the entire Employee table does not have to be searched to find employees named “Jesus”. Instead, the database will use the index to find employees named Jesus, because the index will presumably be sorted alphabetically by the Employee’s name. And, because it is sorted, it means searching for a name is a lot faster because all names starting with a “J” will be right next to each other in the index! It’s also important to note that the index also stores pointers to the table row so that other column values can be retrieved.

What exactly is inside a database index?
So, now you know that a database index is created on a column in a table, and that the index stores the values in that specific column. But, it is important to understand that a database index does not store the values in the other columns of the same table. For example, if we create an index on the Employee_Name column, this means that the Employee_Age and Employee_Address column values are not also stored in the index. If we did just store all the other columns in the index, then it would be just like creating another copy of the entire table – which would take up way too much space and would be very inefficient.


An index also stores a pointer to the table row So, the question is if the value that we are looking for is found in an index (like ‘Jesus’) , how does it find the other values that are in the same row (like the address of Jesus and his age)? Well, it’s quite simple – database indexes also store pointers to the corresponding rows in the table. 
A pointer is just a reference to a place in memory where the row data is stored on disk. So, in addition to the column value that is stored in the index, a pointer to the row in the table where that value lives is also stored in the index. This means that one of the values (or nodes) in the index for an Employee_Name could be something like (“Jesus”, 0x82829), where 0x82829 is the address on disk (the pointer) where the row data for “Jesus” is stored. Without that pointer all you would have is a single value, which would be meaningless because you would not be able to retrieve the other values in the same row – like the address and the age of an employee.


Get involved and leave your Comments in the Box Below. The more people get involved, the more we all benefit.
So, leave your thoughts before you leave the page. 

2 comments: